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4.1 Introduction 

 
 

 
 

 

Rollback recovery treats a distributed system application as a collection of processes that 
communicate over a network. It achieves fault tolerance by periodically saving the state of a 
process during the failure-free execution, enabling it to restart from a saved state upon a failure to 
reduce the amount of lost work. 

 
The saved state is called a checkpoint, and the procedure of restarting from a previously 
checkpointed state is called rollback recovery. A checkpoint can be saved on either the stable 
storage or the volatile storage depending on the failure scenarios to be tolerated. 

 
 In a distributed system, if each participating process takes its checkpoints independently, 

then the system is susceptible to the domino effect. This approach is called independent 
or uncoordinated checkpointing. 

 It is obviously desirable to avoid the domino effect and therefore several techniques have 
been developed to prevent it. One such technique is coordinated check-pointing where 
processes coordinate their checkpoints to form a system-wide consistent state. In case of a 
process failure, the system state can be restored to such a consistent set of checkpoints, 
preventing the rollback propagation. 

 Alternatively, communication-induced checkpointing forces each process to take 
checkpoints based on information piggybacked on the application messages it receives 
from other processes. Checkpoints are taken such that a system-wide consistent state 
always exists on stable storage, thereby avoiding the domino effect. 

 
Log-based rollback recovery 

 The approaches discussed so far implement checkpoint-based rollback recovery, which 
relies only on checkpoints to achieve fault-tolerance. Log-based rollback recovery 
combines checkpointing with logging of non-deterministic events. Log-based rollback 
recovery relies on the piecewise deterministic (PWD) assumption, which postulates that 
all non-deterministic events that a process executes can be identified and that the 
information necessary to replay each event during recovery can be logged in the event’s 
determinant. 

 
 By logging and replaying the non-deterministic events in their exact original order, a 

process can deterministically recreate its pre-failure state even if this state has not been 
checkpointed. Log-based rollback recovery in general enables a system to recover beyond 
the most recent set of consistent checkpoints. It is therefore particularly attractive for 
applications that frequently interact with the outside world, which consists of input and 
output devices that cannot roll back. 

Checkpointing and rollback recovery: Introduction – Background and definitions – Issues in 
failure recovery – Checkpoint-based recovery – Log-based rollback recovery – Coordinated 
checkpointing algorithm – Algorithm for asynchronous checkpointing and recovery. Consensus 
and agreement algorithms: Problem definition – Overview of results – Agreement in a failure – 
free system – Agreement in synchronous systems with failures. 
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4.2 Background and definitions 

 
Introduction 

• Rollback recovery protocols 
– restore the system back to a consistent state after afailure 
– achieve fault tolerance by periodically saving the state of a process during the failure-free 
execution 
– treats a distributed system application as a collection of processesthat communicate over a 
network 
Checkpoints -> the saved states of a process 
Why is rollback recovery of distributed systems complicated? 
messages induce inter-process dependencies during failure-freeoperation 
Rollback propagation 
The dependencies may force some of the processes that did not fail to roll back. This 
phenomenon is called “domino effect” 
If each process takes its checkpoints independently, then the system cannot avoid the 
domino effect 
This scheme is called independent or uncoordinated checkpointing 
Techniques that avoid domino effect 

 Coordinated checkpointing rollback recovery 
processes coordinate their checkpoints to form asystem-wide consistent state 

 Communication-induced checkpointing rollback recovery 
forces each process to take checkpoints based on information piggybacked on the 
application 

 Log-based rollback recovery 
combines checkpointing with logging of non-deterministicevents relies on piecewise 
deterministic (PWD) assumption 

 

 

 System model 
Distributed system consists of a fixed number of processes, P1, P2 PN , which communicate only 
through messages. Processes cooperate to execute a distributed application and interact with the 
outside world by receiving and sending input and output messages, respectively. Figure shows a 
system consisting of three processes and interactions with the outside world. 
Rollback-recovery protocols generally make assumptions about the reliability of the inter-process 
communication. Some protocols assume that the com-munication subsystem delivers messages 
reliably, in first-in-first-out (FIFO) order, while other protocols assume that the communication 
subsystem can 

 A local checkpoint 

• In distributed systems, all processes save their local states at certain instants of time. This 
saved state is known as a local checkpoint. 

• A local checkpoint is a snapshot of the state of the process at a given instance and the event 
of recording the state of a process is called local checkpointing. 

• The contents of a checkpoint depend upon the application context and the checkpointing 
method being used. 
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Assumption 
A process stores all local checkpoints on the stablestorage 
A process is able to roll back to any of its existing localcheckpoints ,  
The kth local checkpoint at process is ,0 
Aprocess  takes a checkpoint ,0 before it startsexecution 

 
 Consistent system states 

 

A global state of a distributedsystem 
A global state of a distributed system is a collection of the individual states of all participating 
processes and the states of the communication channels. 
Consistent global state 

 

A consistent global state is one that may occur during a failure-free execution of a distributed 
computation. More precisely, a consistent system state is one in which a process’s state reflects a 
message receipt, then the state of the corresponding sender must reflect the sending of that 
message 
A global checkpoint 
a set of local checkpoints, one from each process 
A consistent globalcheckpoint 
a global checkpoint such that no message is sent by a process after taking its local point that is 
received by another process before taking its checkpoint 
Consistent states – examples 

 
 For instance, Figure shows two examples of global states. The state in Figure (a) is consistent 
and the state in Figure (b) is inconsistent. Note that the consistent state in Figure (a) shows 
message m1 to have been sent but not yet received, but that is alright. The state in Figure (a) is 
consistent because it represents a situation in which every message that has been received, there 
is a corresponding message send event. 

 The state in Figure (b) is inconsistent because process P2 is shown to have received m2 but the 
state of process P1 does not reflect having sent it. Such a state is impossible in any failure-free, 
correct computation. Inconsistent states occur because of failures. For instance, the situation 
shown in Figure (b) may occur if process P1 fails after sending message m2 to process P2 and 
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then restarts at the state shown in Figure (b). 

Thus, a local checkpoint is a snapshot of a local state of a process and a global checkpoint is a 
set of local checkpoints, one from each process. A consistent global checkpoint is a global 
checkpoint such that no message is sent by a process after taking its local checkpoint that is 
received by another process before taking its local checkpoint. The consistency of global 
checkpoints strongly depends on the flow of messages exchanged by processes and an arbitrary 
set of local checkpoints at processes may not form a consistent global checkpoint. 

 
The fundamental goal of any rollback-recovery protocol is to bring the system to a consistent state 
after a failure. The reconstructed consistent state is not necessarily one that occurred before the 
failure. It is sufficient that the reconstructed state be one that could have occurred before the failure 
in a failure-free execution, provided that it is consistent with the interactions that the system had 
with the outside world. 

 
4.3.4 Interactions with outside world 

 

A distributed application often interacts with the outside world to receive input data or 
deliver the outcome of a computation. If a failure occurs, the outside world cannot be expected 
to roll back. For example, a printer cannot roll back the effects of printing a character, and an 
automatic teller machine cannot recover the money that it dispensed to a customer. 

 
 A distributed system often interacts with the outside worldto receive input data or 
deliver the outcome of a computation 

 Outside World Process (OWP) 
a special process that interacts with the rest of the systemthrough message passing 

A common approach 
save each input message on the stable storage before allowingthe application program to process 
it 
Symbol “||” 
An interaction with the outside world to deliver the outcome of a computation 

 
 Different types of messages 

 

i. In-transit message ->messages that have been sent but not yet received 
In Figure, the global state {C1 8 C2 9 C3 8 C4 8} shows that message m1 has been sent but not 
yet received. We call such a message an in-transit message. Message m2 is also an in-transit 
message. 

ii. Lost messages 
Messages whose send is not undone but receive is undone due to rollback are called lost 
messages. This type of messages occurs when the process rolls back to a checkpoint prior 
to reception of the message while the sender does not rollback beyond the send operation 
of the message. In Figure, message m1 is a lost message. 

iii. Delayed messages 
Messages whose receive is not recorded because the receiving process was either down or 
the message arrived after the rollback of the receiving process, are called delayed messages. 
For example, messages m2 and m5 in Figure  are delayed messages. 

iv. orphan messages 
Messages with receive recorded but message send not recorded are called orphan 
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4.3 Issues in failure recovery 

 
messages. For example, a rollback might have undone the send of such messages, leaving 
the receive event intact at the receiving process. Orphan messages do not arise if 
processes roll back to a consistent global state. 

 

v. Duplicate messages 
 

Duplicate messages arise due to message logging and replaying during process recovery. 
 

For example, in Figure, message m4 was sent and received before the rollback. However, due to 
the rollback of process P4 to C4 8 and process P3 to C3 8, both send and receipt of message m4 are 
undone. When process P3 restarts from C3 8, it will resend message m4. Therefore, P4 should not 
replay message m4 from its log. If P4 replays message m4, then message m4 is called a duplicate 
message. 
Message m5 is an excellent example of a duplicate message. No matter what, the receiver of m5 
will receive a duplicate m5 message. 
Messages – example 

 
 In-transit – 1, 2
 Lost – 1
 Delayed – 1, 5
 Orphan – none
 Duplicated – 4, 5

 

 

In a failure recovery, we must not only restore the system to a consistent state, but also 
appropriately handle messages that are left in an abnormal state due to the failure and recovery. 

The computation comprises of three processes Pi, Pj, and Pk, connected through a communication 
network. The processes communicate solely by exchanging messages over fault-free, FIFO 
communication channels. Processes Pi, Pj , and Pk have taken check-points {Ci 0, Ci 1}, {Cj 0, Cj 1, 
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4.4 Checkpoint-based recovery 

 
Cj 2}, and {Ck 0, Ck 1}, respectively, and these processes have exchanged messages A to J as shown 
in Figure. 

 
 

• Checkpoints : { ,0, ,1}, { ,0, ,1, ,2}, and { ,0, ,1, ,2} 
• Messages : A -J 
• The restored global consistent state : { ,1, ,1, ,1} 
The rollback of process to checkpoint ,1 created an orphan message H 

• Orphan message I is created due to the roll back of process Pj to checkpoint Cj 1 
• Messages C, D, E, and F are potentially problematic 
– Message C: a delayed message 
– Message D: a lost message since the send event for D is recorded in the 
restored state for process Pj , but the receive event has been undone at process Pi. 

- Lost messages can be handled by having processes keep a message log of all the sent 
messages 

Messages E, F: delayed orphan messages. After resumingexecution from their checkpoints, 
processes will generate both of these messages 

 

 

In the checkpoint-based recovery approach, the state of each process and the communication 
channel is check pointed frequently so that, upon a failure, the system can be restored to a 
globally consistent set of checkpoints. It does not rely on the PWD assumption, and so does not 
need to detect, log, or replay non-deterministic events. Checkpoint-based protocols are therefore 
less restrictive and simpler to implement than log-based rollback recovery. However, 
checkpoint-based rollback recovery does not guarantee that pre-failure execution can be 
deterministically regenerated after a rollback. There-fore, checkpoint-based rollback recovery 
may not be suitable for applications that require frequent interactions with the outside world. 
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Checkpoint-based rollback-recovery techniques can be classified into three categories: 
 uncoordi-nated checkpointing, 
 coordinated checkpointing, and 
 communication-induced checkpointing 

 
 Uncoordinated Checkpointing 

Each process has autonomy in deciding when to take checkpoints 

• Advantages 
– The lower runtime overhead during normal execution 
• Disadvantages 
– Domino effect during a recovery 
– Recovery from a failure is slow because processes need to iterate to find a 
consistent set of checkpoints 
– Each process maintains multiple checkpoints and periodically invoke a 
garbage collection algorithm 
– Not suitable for application with frequent outputcommits 
• The processes record the dependencies among their checkpoints caused by 
message exchange during failure-free operation 

 
Direct dependency tracking technique 
Let Ci x be the xth checkpoint of process Pi, where i is the process i.d. and x is the checkpoint 
index (we assume each process Pi starts its execution with an initial checkpoint Ci 0). Let Ii x 
denote the checkpoint interval or simply interval between checkpoints Ci x−1 and Ci x. 

 

 
 

 When a failure occurs, the recovering process initiates rollback by broad-casting a 
dependency request message to collect all the dependency information maintained by each 
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process. When a process receives this message, it stops its execution and replies with the 
dependency information saved on the stable storage as well as with the dependency 
information, if any, which is associated with its current state. 

 The initiator then calculates the recovery line based on the global dependency information 
and broadcasts a rollback request message containing the recovery line. Upon receiving 
this message, a process whose current state belongs to the recovery line simply resumes 
execution; otherwise, it rolls back to an earlier checkpoint as indicated by the recovery line. 

 
Coordinated checkpointing 

 In coordinated checkpointing, processes orchestrate their checkpointing activ-ities so that 
all local checkpoints form a consistent global state. Coordinated checkpointing simplifies 
recovery and is not susceptible to the domino effect, since every process always restarts 
from its most recent checkpoint. 

 Also, coordinated checkpointing requires each process to maintain only one checkpoint on 
the stable storage, reducing the storage overhead and eliminating the need for garbage 
collection. The main disadvantage of this method is that large latency is involved in 
committing output, as a global checkpoint is needed before a message is sent to the OWP. 
Also, delays and overhead are involved everytime a new global checkpoint is taken. 

 If perfectly synchronized clocks were available at processes, the following simple method 
can be used for checkpointing: all processes agree at what instants of time they will take 
checkpoints, and the clocks at processes trigger the local checkpointing actions at all 
processes. Since perfectly synchronized clocks are not available, the following approaches 
are used to guarantee checkpoint consistency: either the sending of messages is blocked 
for the duration of the protocol, or checkpoint indices are piggybacked to avoid blocking. 

 
Blocking Checkpointing 

 
 A straightforward approach to coordinated checkpointing is to block commu-nications 

while the checkpointing protocol executes. After a process takes a local checkpoint, to 
prevent orphan messages, it remains blocked until the entire checkpointing activity is 
complete. 

 The coordinator takes a checkpoint and broadcasts a request message to all processes, 
asking them to take a checkpoint. When a process receives this message, it stops its 
execution, flushes all the communication channels, takes a tentative checkpoint, and sends 
an acknowledgment message back to the coordinator. After the coordinator receives 
acknowledgments from all processes, it broadcasts a commit message that completes the 
two-phase checkpointing protocol. 

 After receiving the commit message, a process removes the old permanent checkpoint and 
atomically makes the tentative checkpoint permanent and then resumes its execution and 
exchange of messages with other processes. A problem with this approach is that the 
computation is blocked during the checkpointing and therefore, non-blocking 
checkpointing schemes are preferable. 

 
 

– After a process takes a local checkpoint, to prevent orphan messages, it 
remains blocked until the entire checkpointing activity is complete 
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– Disadvantages 
• the computation is blocked during the checkpointing 
Non-blocking Checkpointing 

 
In this approach the processes need not stop their execution while taking checkpoints. A 
fundamental problem in coordinated checkpointing is to pre-vent a process from receiving 
application messages that could make the checkpoint inconsistent. 
Consider the example in Figure (a): message m is sent by P0 after receiving a checkpoint request 
from the checkpoint coordinator. Assume m reaches P1 before the checkpoint request. This sit- 
uation results in an inconsistent checkpoint since checkpoint c1 x shows the receipt of message m 
from P0, while checkpoint c0 x does not show m being sent from P0. 

 
If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint 
message on each channel by a checkpoint request, forcing each process to take a checkpoint 
before receiving the first post-checkpoint message, as illustrated in Figure 13.6(b). 

 

Non-blocking coordinated checkpointing: (a) checkpoint inconsistency; (b) a solution with 
FIFO channels 

 
• The processes need not stop their execution while takingcheckpoints 
• A fundamental problem in coordinated check pointing is to preventa process from 

receiving application messages that could make the checkpoint inconsistent. 
 
 

• Example (a) : checkpoint inconsistency 
 

message m is sent by P0 after receiving a checkpoint request from the checkpoint coordinator. 
Assume m reaches P1 before the checkpoint request. This situation results in an inconsistent 
checkpoint since checkpoint c1 x shows the receipt of message m from P0, while checkpoint c0 x 
does not show m being sent from P0. 
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k 

 
 

• Example (b) : a solution with FIFO channels 
If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint message 
on each channel by a checkpoint request, forcing each process to take a checkpoint before 
receiving thefirst post-checkpoint message 

 
Impossibility of min-process non-blocking checkpointing 

 

A min-process, non-blocking checkpointing algorithm is one that forces only a minimum number 
of processes to take a new checkpoint, and at the same time it does not force any process to suspend 
its computation. Clearly, such checkpointing algorithms will be very attractive. Cao and Singhal 
showed that it is impossible to design a min-process, non-blocking checkpointing algorithm. 

 
The following type of min-process checkpointing algorithms are possible. The algorithm consists 
of two phases. 

 During the first phase, the checkpoint initiator identifies all processes with which it has 
communicated since the last checkpoint and sends them a request. Upon receiving the 
request, each process in turn identifies all processes it has communicated with since the 
last checkpoint and sends them a request, and so on, until no more processes can be 
identified. 

 During the second phase, all processes identified in the first phase take a checkpoint. The 
result is a consistent checkpoint that involves only the participating processes. In this 
protocol, after a process takes a checkpoint, it cannot send any message until the second 
phase terminates successfully, although receiving a message after the checkpoint has been 
taken is allowable. 

 
Based on a concept called “Z-dependency,” Cao and Singhal proved that there does not exist a 
non-blocking algorithm that will allow a minimum number of processes to take their checkpoints. 
Here we give only a sketch of the proof and readers are referred to the original source for a detailed 
proof. 

 
Z-dependency is defined as follows: if a process Pp sends a message to process Pq during its ith 
checkpoint interval and process Pq receives the message during its jth checkpoint interval, then Pq 
Z-depends on Pp during Pp’s ith checkpoint interval and Pq ’s jth checkpoint interval, denoted by 
Pp →i Pq . If Pp →i Pq and Pq → j k Pr , then Pr transitively Z-depends depends on Pp during Pr ’s 
kth checkpoint interval and Pp’s ith checkpoint interval, and this is denoted as Pp ∗ →i Pr . 

 

A min process algorithm is one that satisfies the following condition: when a process Pp initiates 
a new checkpoint and takes checkpoint Cp i, a process Pq takes a checkpoint Cq j associated with 
Cp i if and only if Pq ∗ →j −1

i−1 Pp. In a min-process non-blocking algorithm, process Pp initiates a 
new checkpoint and takes a checkpoint Cp i and if a process Pr sends a message m to Pq after it 
takes a new checkpoint associated with Cp i, then Pq takes a checkpoint Cq i before processing m if 
and only if Pq ∗ → j −1

i−1 Pp. According to the min-process definition, Pq takes checkpoint Cq j if 
and only if Pq ∗ →j−1

i−1 Pp, but Pq should take Cq i before processing m. If it takes Cq j after 
processing m, m becomes an orphan. Therefore, when a process receives a message m, it must 
know if the initiator of a new checkpoint transitively Z-depends on it during the previous 
checkpoint interval. But it has been proved that there is not enough information at the receiver of 

j j 
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a message to decide whether the initiator of a new checkpoint transitively Z-depends on the 
receiver. Therefore, no min-process, non-blocking algorithm exists. 

 
 Communication-induced Checkpointing 

 

Communication-induced checkpointing is another way to avoid the domino effect, while 
allowing processes to take some of their checkpoints inde-pendently. Processes may be forced to 
take additional checkpoints (over and above their autonomous checkpoints), and thus process 
independence is constrained to guarantee the eventual progress of the recovery line. 
Communication-induced checkpointing reduces or completely eliminates the useless 
checkpoints. 
• Two types of checkpoints 

– autonomous and forced checkpoints 
• Communication-induced checkpointing piggybacks protocol- related 
information on each application message 
• The receiver of each application message uses the piggybacked information to 
determine if it has to take a forced checkpoint to advance the global recovery line 
• The forced checkpoint must be taken before the application may process the 
contents of the message 
• In contrast with coordinated checkpointing, no special coordination messages are 
exchanged 
• Two types of communication-induced checkpointing 

– (i) model-based checkpointing and 
– (ii) index-based checkpointing. 
Model-based checkpointing 

 

 Model-based checkpointing prevents patterns of communications and check-points that 
could result in inconsistent states among the existing checkpoints. \ 

 A process detects the potential for inconsistent checkpoints and independently forces local 
checkpoints to prevent the formation of undesirable patterns. 

 A forced checkpoint is generally used to prevent the undesirable patterns from occurring. 
No control messages are exchanged among the processes during normal operation. All 
information necessary to execute the protocol is piggy-backed on application messages. 
The decision to take a forced checkpoint is done locally using the information available. 

 
Index-based checkpointing 

 

 Index-based communication-induced checkpointing assigns monotonically increasing 
indexes to checkpoints, such that the checkpoints having the same index at different 
processes form a consistent state. 

 Inconsistency between checkpoints of the same index can be avoided in a lazy fashion if 
indexes are piggybacked on application messages to help receivers decide when they 
should take a forced a checkpoint. 
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∀ e: Stable(e) ⇒ |Depend(e)| =0 

 
 

 
• A log-based rollback recovery makes use of deterministic and 
nondeterministic events in a computation. 

 
 Deterministic and Non-deterministic events 

– Non-deterministic events can be the receipt of a message from another 
process or an event internal to the process 
– a message send event is not a non-deterministic event. 
The execution of process P0 is a sequence of four deterministic intervals. The first one starts with 
the creation of the process, while the remaining three start with the receipt of messages m0, m3, 
and m7, respectively. Send event of message m2 is uniquely determined by the initial state of P0 
and by the receipt of message m0, and is therefore not a non-deterministic event. 

– Log-based rollback recovery assumes that all non-deterministic events can 
be identified and their corresponding determinants can be logged into the stable storage 
– During failure-free operation, each process logs the determinants of all 
non-deterministic events that it observes onto the stable storage 

 
 

No-orphans consistency condition 
• Let e be a non-deterministic event that occurs at process p 
Depend(e) -> the set of processes that are affected by a non-deterministic event e.This set 
consists of p, and any process whose state depends on the event e according to Lamport’s 
happened before relation 
Log(e) ->  the set of processes that have logged a copy of e’s determinant in their volatile memory 
Stable(e) -> a predicate that is true if e’s determinant is logged on the stable storage 
• always-no-orphans condition 

 
 

 Pessimistic Logging 
 

Pessimistic logging protocols assume that a failure can occur after any non-deterministic 
event in the computation 
• However, in reality failures are rare 
synchronous logging 

 

∀ (e) : Stable(e) ⇒ Depend(e) ⊆Log(e) 

4.5 Log-based rollback recovery 
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– if an event has not been logged on the stable storage, then no processca n 
depend on it. 
– stronger than the always-no-orphans condition 

 

Suppose processes P1 and P2 fail as shown, restart from checkpoints B and C, and roll forward 
using their determinant logs to deliver again the same sequence of messages as in the pre-failure 
execution. This guarantees that P1 and P2 will repeat exactly their pre-failure execution and re- 
send the same messages. Hence, once the recovery is complete, both processes will be consistent 
with the state of P0 that includes the receipt of message m7 from P1. In a pessimistic logging system, 
the observable state of each process is always recoverable. 

 
 

 Optimistic Logging 
 

 In optimistic logging protocols, processes log determinants asynchronously to the stable 
storage . These protocols optimistically assume that logging will be complete before a 
failure occurs. Determinants are kept in a volatile log, and are periodically flushed to the 
stable storage. Thus, optimistic logging does not require the application to block waiting 
for the determinants to be written to the stable storage, and therefore incurs much less 
overhead during failure-free execution. 

 However, the price paid is more complicated recovery, garbage collection, and slower 
output commit. If a process fails, the determinants in its volatile log are lost, and the state 
intervals that were started by the non-deterministic events corresponding to these 
determinants cannot be recovered. 

 Furthermore, if the failed process sent a message during any of the state intervals that 
cannot be recovered, the receiver of the message becomes an orphan process and must roll 
back to undo the effects of receiving the message. 

 
To perform rollbacks correctly, optimistic logging protocols track causal dependencies 
during failure free execution 

• Optimistic logging protocols require a non-trivial garbage collect ion scheme 
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4.6 Koo-Toueg coordinated checkpointing algorithm 

 

• Pessimistic protocols need only keep the most recent checkpoint of each process, 
whereas optimistic protocols may need to keep multiple checkpoints for each process 

 
 Causal Logging 

 

Combines the advantages of both pessimistic and optimistic logging at the expense of a more 
complex recovery protocol. Like optimistic logging, it does not require synchronous access to the 
stable storage except during output commit. Like pessimistic logging, it allows each process to 
commit output independently and never creates orphans, thus isolating processes from the effects 
of failures at other processes. Moreover, causal logging limits the rollback of any failed process to 

the most recent checkpoint on the stable storage, thus minimizing the storage overhead and the 
amount of lost work. 

 

• Make sure that the always-no-orphans property holds 
• Each process maintains information about all the events that have causally affected its 
state 
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• A coordinated checkpointing and recovery technique that takes a consistent set 
of checkpointing and avoids domino effect and livelock problems during the recovery 

 
• Includes 2 parts: the checkpointing algorithm and the recovery algorithm 

 
4.6.1 Checkpointing algorithm 
– Assumptions: FIFO channel, end-to-end protocols, communication 
failures do not partition the network, single process initiation, no process fails during the 
execution of the algorithm 

 
Two kinds of checkpoints: permanent and tentative 

• Permanent checkpoint: local checkpoint, part of a consistent global checkpoint 
• Tentative checkpoint: temporary checkpoint, become permanent checkpoint when the 

algorithm terminates successfully 
 

Checkpointing algorithm 
2 phases 
• The initiating process takes a tentative checkpoint and requests all other processes to take 

tentative checkpoints. Every process can not send messages after taking tentative checkpoint. 
All processes will finally have the single same decision: do or discard 

• All processes will receive the final decision from initiating process and act accordingly 
Correctness: for 2 reasons 
• Either all or none of the processes take permanent checkpoint 
• No process sends message after taking permanent checkpoint 
Optimization: maybe not all of the processes need to take checkpoints (if not change since the 
last checkpoint) 
The rollback recovery algorithm 

 

• Restore the system state to a consistent state after a failure with assumptions: single 
initiator, checkpoint and rollback recovery algorithms are not invoked concurrently 

 
Example of checkpoints taken unnecessarily 

 

2 phases 
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4.7 Juang-Venkatesan algorithm for asynchronous checkpointing and recovery 

 
 

First phase 
 

An initiating process Pi sends a message to all other processes to check if they all are willing to 
restart from their previous checkpoints. A process may reply “no” to a restart request due to any 
reason (e.g., it is already participating in a checkpoint or recovery process initiated by some other 
process). If Pi learns that all processes are willing to restart from their previous checkpoints, Pi 
decides that all processes should roll back to their previous checkpoints. Otherwise, Pi aborts the 
rollback attempt and it may attempt a recovery at a later time. 

Second phase 
 

Pi propagates its decision to all the processes. On receiving Pi’s decision, a process acts 
accordingly. 

During the execution of the recovery algorithm, a process cannot send messages related to the 
underlying computation while it is waiting for Pi’s decision. 

Correctness 
 

All processes restart from an appropriate state because, if they decide to restart, they resume 
execution from a consistent state (the checkpointing algorithm takes a consistent set of 
checkpoints). 

 
An optimization 
The above recovery protocol causes all processes to roll back irrespective of whether a process 
needs to roll back or not. Consider the example shown in Figure. In the event of failure of process 
X, the above protocol will require processes X, Y, and Z to restart from checkpoints x2, y2, and z2, 
respectively. However, note that process Z need not roll back because there has been no interaction 
between process Z and the other two processes since the last checkpoint at Z. 

 

• Assumptions: communication channels are reliable, delivery messages in FIFO 
order, infinite buffers, message transmission delay is arbitrary but finite 
• Underlying computation/application is event-driven: process P is at state s, 
receives message m, processes the message, moves to state s’and send messages out. So the 
triplet (s, m, msgs_sent) represents the state of P 
Two type of log storage are maintained: 
– Volatile log: short time to access but lost if processor crash. Move to 
stable log periodically. 
– Stable log: longer time to access but remained if crashed 

 

Asynchronous checkpointing: 
• After executing an event, the triplet is recorded without any synchronization with other 

processes. 
• Local checkpoint consist of set of records, first are stored in volatile log, then moved to 

stable log. 
Recovery algorithm 
Notation and data structure 
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The following notation and data structure are used by the algorithm: 

• RCVDi←j CkPti represents the number of messages received by processor pi from 
processor pj , from the beginning of the computation until the checkpoint CkPti. 

 

• SENTi→j CkPti represents the number of messages sent by processor pi to processor 
pj , from the beginning of the computation until the checkpoint CkPti. 

Idea: 
 From the set of checkpoints, find a set of consistent checkpoints 
 Doing that based on the number of messages sent and received 

Example 
 

 
 

Procedure RollBack_Recovery: 
processor pi executes the following: 

STEP (a) 
 

if processor pi is recovering after a failure then CkPti = latest event 
logged in the stable storage 

else 
 

CkPti = latest event that took place in pi {The latest event at pi can be either in stable or 
in volatile storage.} 

 
end if 

STEP (b) 

for k = 1 to N {N is the number of processors in the system} do for each 
neighboring processor pj do 

 
compute SENTi→j CkPti 

 
send a ROLLBACK i SENTi→j CkPti message to pj end for 

 
for every ROLLBACK j c message received from a neighbor j do 
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if RCVDi←j CkPti > c {Implies the presence of orphan messages} 
then 
find the latest event e such that RCVDi←j e = c {Such an event e may be in the 
volatile storage or stable storage.} 

 
CkPti = e 

end if 
 

end for 
 

end for{for k} 
 
 

 Consensus and Agreement 
 

 Assumptions 
Assumptions underlying our study of agreement algorithms: 

 
Failure models Among the n processes in the system, at most f processes can be faulty. A faulty 
process can behave in any manner allowed by the failure model assumed. 

 
Synchronous/asynchronous communication If a failure-prone process chooses to send a message 
to process Pi but fails, then Pi cannot detect the non-arrival of the message in an asynchronous 
system because this scenario is indistinguishable from the scenario in which the message takes a 
very long time in transit. 

• Network connectivity The system has full logical connectivity, i.e., each process can 
communicate with any other by direct message passing. 

 
• Sender identification A process that receives a message always knows the identity of the 

sender process. This assumption is important – because even with Byzantine behavior, even 
though the payload of the message can contain fictitious data sent by a malicious sender, the 
underlying network layer protocols can reveal the true identity of the sender process. 

• Channel reliability The channels are reliable, and only the processes may fail (under one of 
various failure models). This is a simplifying assumption in our study. As we will see even 
with this simplifying assumption, the agreement problem is either unsolvable, or solvable in 
a complex manner. 

 
• Authenticated vs. non-authenticated messages In our study, we will be dealing only with 

unauthenticated messages. With unauthenticated mes-sages, when a faulty process relays a 
message to other processes, (i) it can forge the message and claim that it was received from 
another process, and (ii) it can also tamper with the contents of a received message before 
relaying it. An unauthenticated message is also called an oral message or an unsigned 
message. 

 
• Agreement variable The agreement variable may be boolean or multi-valued, and need not 

be an integer. When studying some of the more complex algorithms, we will use a boolean 
variable. This simplifying assumption does not affect the results for other data types, but 
helps in the abstraction while presenting the algorithms. 
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 Problem Specifications 
The Byzantine agreement and other problems 

 
Byzantine Agreement (single source has an initial value) 
Agreement:All non-faulty processes must agree on the same value. 
Validity:If the source process is non-faulty, then the agreed upon value by all the non-faulty 
processes must be the same as the initial value of the source. 
Termination:Each non-faulty process must eventually decide on a value. 

 

Consensus Problem (all processes have an initial value) 
Agreement:All non-faulty processes must agree on the same (single) value. 
Validity:If all the non-faulty processes have the same initial value, then the agreed upon value by 
all the non-faulty processes must be that same value. 
Termination:Each non-faulty process must eventually decide on a value. 

 

Interactive Consistency (all processes have an initial value) 
Agreement:All non-faulty processes must agree on the same array of values A[v1 . . . vn]. 
Validity:If process i is non-faulty and its initial value is vi , then all non-faulty processes agree 
on vi as the i th element of the array A. If process j is faulty, then the non-faulty processes can 
agree on any value for A[j]. 
Termination:Each non-faulty process must eventually decide on the array A. These problems are 
equivalent to one another! Show using reductions. 

 

 Overview of Results 
 

Failure 
mode 

Synchronous system 
(message-passing and shared memory) 

Asynchronous system 
(message-passing and shared memory) 

No 
failure 

agreement attainable; 
common knowledge also attainable 

agreement attainable; 
concurrent common knowledge attainable 

Crash 
failure 

agreement attainable 
f < n processes Ω(f + 1) rounds 

agreement not attainable 

Byzantine 
failure 

agreement attainable 
f ≤ |(n − 1)/3∫ Byzantine processes 
Ω(f + 1) rounds 

agreement not attainable 

Table:Overview of results on agreement. f denotes number of failure-prone processes. n 
is the total number of processes. 
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Agreement in a failure-free system (synchronous or asynchronous) 

 

In a failure-free system, consensus can be attained in a straightforward manner 
Some Solvable Variants of the Consensus Problem in Async Systems 

 
Solvable 
Variants 

Failure model and 
overhead 

Definition 

Reliable 
broadcast 

crash failures, n > f 
(MP) 

Validity, Agreement, Integrity 
conditions 

k-set 
consensus 

crash failures. f < k < n. 
(MP and SM) 

size of the set of values agreed 
upon must be less than k 

s- 
agreement 

crash failures 
n ≥ 5f + 1 (MP) 

values agreed upon are 
within s of eachother 

Renaming up to f fail-stop 
processes, 

n ≥ 2f + 1 (MP) 
Crash failures f ≤ n − 

1 (SM) 

select a unique name from 
a set of names 

Table:Some solvable variants of the agreement problem in asynchronous system. The overhead 
bounds are for the given algorithms, and not necessarily tight bounds for the problem 

 
Solvable Variants of the Consensus Problem in Async Systems 

 
 

 

 Agreement in a failure-free system 
 

 Agreement in (message-passing) synchronous systems with failures 
 

 Consensus Algorithm for Crash Failures (MP, synchronous) 
 Up to f (< n) crash failures possible. 
 In f + 1 rounds, at least one round has no failures. 
 Now justify: agreement, validity, termination conditions are satisfied. 
 Complexity: O(f + 1)n2 messages 
 f + 1 is lower bound on number of rounds 
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Upper Bound on Byzantine Processes (sync) 
 

 
Taking simple majority decision does not help because loyal commander Pa cannot distinguish 
between the possible scenarios (a) and (b); hence does not know which action to take. 

 
 Byzantine agreement tree algorithm: exponential (synchronous system) 

Recursive formulation 
 In the first round, the commander Pc sends its value to the other three lieutenants, as 

shown by dotted arrows. 
 In the second round, each lieutenant relays to the other two lieutenants, the value it 

received from the commander in the first round. At the end of the second round, a 
lieutenant takes the majority of the values it received (i) directly from the commander in 
the first round, and (ii) from the other two lieutenants in the second round. 

 The majority gives a correct estimate of the commander’s value. 
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Consensus Solvable when f = 1, n = 4 

 

 There is no ambiguity at any loyal commander, when taking majority decision 
 Majority decision is over 2nd round messages, and 1st round message received directly 

from commander-in-chief process. 
 

Byzantine Generals (recursive formulation), (sync, msg-passing) 
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Relationship between # Messages and Rounds 
 
 

Relationships between messages and rounds in the Oral Messages algorithm for Byzantine 
agreement. 
Complexity: f + 1 rounds, exponential amount of space, and (n − 1) + (n − 1)(n − 2) + . . . + (n − 
1)(n − 2)..(n − f − 1)messages 
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Bzantine Generals (iterative formulation), Sync, Msg-passing 

 
 

Tree Data Structure for Agreement Problem (Byzantine Generals) 
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 Exponential Algorithm: An example 
 
 

 
Impact of a Loyal and of a Disloyal Commander 
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The effects of a loyal or a disloyal commander in a system with n = 14 and f = 4. The subsystems 
that need to tolerate k and k − 1 traitors are shown for two cases. (a) Loyal commander. 
(b) No assumptions about commander. 

 
(a) the commander who invokes Oral Msg(x) is loyal, so all the loyal processes have the same 
estimate. Although the subsystem of 3x processes has x malicious processes, all the loyal 
processes have the same view to begin with. Even if this case repeats for each nested invocation 
of Oral Msg, even after x rounds, among the processes, the loyal processes are in a simple 
majority, so the majority function works in having them maintain the same common view of the 
loyal commander’s value. 
(b) the commander who invokes Oral Msg(x) may be malicious and can send conflicting values 
to the loyal processes. The subsystem of 3x processes has x − 1 malicious processes, but all the 
loyal processes do not have the same view to begin with. 

 
 The Phase King Algorithm 

 

Operation 
Each phase has a unique ”phase king” derived, say, from PID. Each phase has 
two rounds: 

in 1st round, each process sends its estimate to all other processes. 
in 2nd round, the ”Phase king” process arrives at an estimate based on the values it 
received in 1st round, and broadcasts its new estimate to all others. 
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(f + 1) phases, (f + 1)[(n − 1)(n + 1)] messages, and can tolerate up to 
f < |n/4| malicious processes 

 
Correctness Argument 

Among f + 1 phases, at least one phase k where phase-king is non-malicious. 
In phase k, all non-malicious processes Pi and Pj will have same estimate of consensus 
value as Pk does. 

Pi and Pj use their own majority  values (Hint:  =⇒ Pi ’s mult > n/2 + f  ) 
Pi uses its majority value; Pj uses phase-king’s tie-breaker value. (Hint: Pi ”s 
mult > n/2 + f , Pj ’s mult > n/2 for same value) 
Pi and Pj use the phase-king’s tie-breaker value. (Hint: In the phase in which 
Pk is non-malicious, it sends same value to Pi and Pj ) 

In all 3 cases, argue that Pi and Pj end up with same value as estimate 
If all non-malicious processes have the value x at the start of a phase, they will continue 
to have x as the consensus value at the end of the phase. 


