
UNIT 4 DISTRIBUTED SYSTEMS

4.1 Introduction

Rollback recovery treats a distributed system application as a collection of processes that
communicate over a network. It achieves fault tolerance by periodically saving the state of a
process during the failure-free execution, enabling it to restart from a saved state upon a failure to
reduce the amount of lost work.

The saved state is called a checkpoint, and the procedure of restarting from a previously
checkpointed state is called rollback recovery. A checkpoint can be saved on either the stable
storage or the volatile storage depending on the failure scenarios to be tolerated.

 In a distributed system, if each participating process takes its checkpoints independently,

then the system is susceptible to the domino effect. This approach is called independent
or uncoordinated checkpointing.

 It is obviously desirable to avoid the domino effect and therefore several techniques have
been developed to prevent it. One such technique is coordinated check-pointing where
processes coordinate their checkpoints to form a system-wide consistent state. In case of a
process failure, the system state can be restored to such a consistent set of checkpoints,
preventing the rollback propagation.

 Alternatively, communication-induced checkpointing forces each process to take
checkpoints based on information piggybacked on the application messages it receives
from other processes. Checkpoints are taken such that a system-wide consistent state
always exists on stable storage, thereby avoiding the domino effect.

Log-based rollback recovery

 The approaches discussed so far implement checkpoint-based rollback recovery, which
relies only on checkpoints to achieve fault-tolerance. Log-based rollback recovery
combines checkpointing with logging of non-deterministic events. Log-based rollback
recovery relies on the piecewise deterministic (PWD) assumption, which postulates that
all non-deterministic events that a process executes can be identified and that the
information necessary to replay each event during recovery can be logged in the event’s
determinant.

 By logging and replaying the non-deterministic events in their exact original order, a

process can deterministically recreate its pre-failure state even if this state has not been
checkpointed. Log-based rollback recovery in general enables a system to recover beyond
the most recent set of consistent checkpoints. It is therefore particularly attractive for
applications that frequently interact with the outside world, which consists of input and
output devices that cannot roll back.

Checkpointing and rollback recovery: Introduction – Background and definitions – Issues in
failure recovery – Checkpoint-based recovery – Log-based rollback recovery – Coordinated
checkpointing algorithm – Algorithm for asynchronous checkpointing and recovery. Consensus
and agreement algorithms: Problem definition – Overview of results – Agreement in a failure –
free system – Agreement in synchronous systems with failures.

UNIT IV RECOVERY & CONSENSUS

UNIT 4 DISTRIBUTED SYSTEMS

4.2 Background and definitions

Introduction

• Rollback recovery protocols
– restore the system back to a consistent state after afailure
– achieve fault tolerance by periodically saving the state of a process during the failure-free
execution
– treats a distributed system application as a collection of processesthat communicate over a
network
Checkpoints -> the saved states of a process
Why is rollback recovery of distributed systems complicated?
messages induce inter-process dependencies during failure-freeoperation
Rollback propagation
The dependencies may force some of the processes that did not fail to roll back. This
phenomenon is called “domino effect”
If each process takes its checkpoints independently, then the system cannot avoid the
domino effect
This scheme is called independent or uncoordinated checkpointing
Techniques that avoid domino effect

 Coordinated checkpointing rollback recovery
processes coordinate their checkpoints to form asystem-wide consistent state

 Communication-induced checkpointing rollback recovery
forces each process to take checkpoints based on information piggybacked on the
application

 Log-based rollback recovery
combines checkpointing with logging of non-deterministicevents relies on piecewise
deterministic (PWD) assumption

 System model
Distributed system consists of a fixed number of processes, P1, P2 PN , which communicate only
through messages. Processes cooperate to execute a distributed application and interact with the
outside world by receiving and sending input and output messages, respectively. Figure shows a
system consisting of three processes and interactions with the outside world.
Rollback-recovery protocols generally make assumptions about the reliability of the inter-process
communication. Some protocols assume that the com-munication subsystem delivers messages
reliably, in first-in-first-out (FIFO) order, while other protocols assume that the communication
subsystem can

 A local checkpoint

• In distributed systems, all processes save their local states at certain instants of time. This
saved state is known as a local checkpoint.

• A local checkpoint is a snapshot of the state of the process at a given instance and the event
of recording the state of a process is called local checkpointing.

• The contents of a checkpoint depend upon the application context and the checkpointing
method being used.

UNIT 4 DISTRIBUTED SYSTEMS

Assumption
A process stores all local checkpoints on the stablestorage
A process is able to roll back to any of its existing localcheckpoints ,
The kth local checkpoint at process is ,0
Aprocess takes a checkpoint ,0 before it startsexecution

 Consistent system states

A global state of a distributedsystem
A global state of a distributed system is a collection of the individual states of all participating
processes and the states of the communication channels.
Consistent global state

A consistent global state is one that may occur during a failure-free execution of a distributed
computation. More precisely, a consistent system state is one in which a process’s state reflects a
message receipt, then the state of the corresponding sender must reflect the sending of that
message
A global checkpoint
a set of local checkpoints, one from each process
A consistent globalcheckpoint
a global checkpoint such that no message is sent by a process after taking its local point that is
received by another process before taking its checkpoint
Consistent states – examples

 For instance, Figure shows two examples of global states. The state in Figure (a) is consistent
and the state in Figure (b) is inconsistent. Note that the consistent state in Figure (a) shows
message m1 to have been sent but not yet received, but that is alright. The state in Figure (a) is
consistent because it represents a situation in which every message that has been received, there
is a corresponding message send event.

 The state in Figure (b) is inconsistent because process P2 is shown to have received m2 but the
state of process P1 does not reflect having sent it. Such a state is impossible in any failure-free,
correct computation. Inconsistent states occur because of failures. For instance, the situation
shown in Figure (b) may occur if process P1 fails after sending message m2 to process P2 and

UNIT 4 DISTRIBUTED SYSTEMS

then restarts at the state shown in Figure (b).

Thus, a local checkpoint is a snapshot of a local state of a process and a global checkpoint is a
set of local checkpoints, one from each process. A consistent global checkpoint is a global
checkpoint such that no message is sent by a process after taking its local checkpoint that is
received by another process before taking its local checkpoint. The consistency of global
checkpoints strongly depends on the flow of messages exchanged by processes and an arbitrary
set of local checkpoints at processes may not form a consistent global checkpoint.

The fundamental goal of any rollback-recovery protocol is to bring the system to a consistent state
after a failure. The reconstructed consistent state is not necessarily one that occurred before the
failure. It is sufficient that the reconstructed state be one that could have occurred before the failure
in a failure-free execution, provided that it is consistent with the interactions that the system had
with the outside world.

4.3.4 Interactions with outside world

A distributed application often interacts with the outside world to receive input data or
deliver the outcome of a computation. If a failure occurs, the outside world cannot be expected
to roll back. For example, a printer cannot roll back the effects of printing a character, and an
automatic teller machine cannot recover the money that it dispensed to a customer.

 A distributed system often interacts with the outside worldto receive input data or
deliver the outcome of a computation

 Outside World Process (OWP)
a special process that interacts with the rest of the systemthrough message passing

A common approach
save each input message on the stable storage before allowingthe application program to process
it
Symbol “||”
An interaction with the outside world to deliver the outcome of a computation

 Different types of messages

i. In-transit message ->messages that have been sent but not yet received
In Figure, the global state {C1 8 C2 9 C3 8 C4 8} shows that message m1 has been sent but not
yet received. We call such a message an in-transit message. Message m2 is also an in-transit
message.

ii. Lost messages
Messages whose send is not undone but receive is undone due to rollback are called lost
messages. This type of messages occurs when the process rolls back to a checkpoint prior
to reception of the message while the sender does not rollback beyond the send operation
of the message. In Figure, message m1 is a lost message.

iii. Delayed messages
Messages whose receive is not recorded because the receiving process was either down or
the message arrived after the rollback of the receiving process, are called delayed messages.
For example, messages m2 and m5 in Figure are delayed messages.

iv. orphan messages
Messages with receive recorded but message send not recorded are called orphan

UNIT 4 DISTRIBUTED SYSTEMS

4.3 Issues in failure recovery

messages. For example, a rollback might have undone the send of such messages, leaving
the receive event intact at the receiving process. Orphan messages do not arise if
processes roll back to a consistent global state.

v. Duplicate messages

Duplicate messages arise due to message logging and replaying during process recovery.

For example, in Figure, message m4 was sent and received before the rollback. However, due to
the rollback of process P4 to C4 8 and process P3 to C3 8, both send and receipt of message m4 are
undone. When process P3 restarts from C3 8, it will resend message m4. Therefore, P4 should not
replay message m4 from its log. If P4 replays message m4, then message m4 is called a duplicate
message.
Message m5 is an excellent example of a duplicate message. No matter what, the receiver of m5
will receive a duplicate m5 message.
Messages – example

 In-transit – 1, 2
 Lost – 1
 Delayed – 1, 5
 Orphan – none
 Duplicated – 4, 5

In a failure recovery, we must not only restore the system to a consistent state, but also
appropriately handle messages that are left in an abnormal state due to the failure and recovery.

The computation comprises of three processes Pi, Pj, and Pk, connected through a communication
network. The processes communicate solely by exchanging messages over fault-free, FIFO
communication channels. Processes Pi, Pj , and Pk have taken check-points {Ci 0, Ci 1}, {Cj 0, Cj 1,

UNIT 4 DISTRIBUTED SYSTEMS

4.4 Checkpoint-based recovery

Cj 2}, and {Ck 0, Ck 1}, respectively, and these processes have exchanged messages A to J as shown
in Figure.

• Checkpoints : { ,0, ,1}, { ,0, ,1, ,2}, and { ,0, ,1, ,2}
• Messages : A -J
• The restored global consistent state : { ,1, ,1, ,1}
The rollback of process to checkpoint ,1 created an orphan message H

• Orphan message I is created due to the roll back of process Pj to checkpoint Cj 1
• Messages C, D, E, and F are potentially problematic
– Message C: a delayed message
– Message D: a lost message since the send event for D is recorded in the
restored state for process Pj , but the receive event has been undone at process Pi.

- Lost messages can be handled by having processes keep a message log of all the sent
messages

Messages E, F: delayed orphan messages. After resumingexecution from their checkpoints,
processes will generate both of these messages

In the checkpoint-based recovery approach, the state of each process and the communication
channel is check pointed frequently so that, upon a failure, the system can be restored to a
globally consistent set of checkpoints. It does not rely on the PWD assumption, and so does not
need to detect, log, or replay non-deterministic events. Checkpoint-based protocols are therefore
less restrictive and simpler to implement than log-based rollback recovery. However,
checkpoint-based rollback recovery does not guarantee that pre-failure execution can be
deterministically regenerated after a rollback. There-fore, checkpoint-based rollback recovery
may not be suitable for applications that require frequent interactions with the outside world.

UNIT 4 DISTRIBUTED SYSTEMS

Checkpoint-based rollback-recovery techniques can be classified into three categories:
 uncoordi-nated checkpointing,
 coordinated checkpointing, and
 communication-induced checkpointing

 Uncoordinated Checkpointing

Each process has autonomy in deciding when to take checkpoints

• Advantages
– The lower runtime overhead during normal execution
• Disadvantages
– Domino effect during a recovery
– Recovery from a failure is slow because processes need to iterate to find a
consistent set of checkpoints
– Each process maintains multiple checkpoints and periodically invoke a
garbage collection algorithm
– Not suitable for application with frequent outputcommits
• The processes record the dependencies among their checkpoints caused by
message exchange during failure-free operation

Direct dependency tracking technique
Let Ci x be the xth checkpoint of process Pi, where i is the process i.d. and x is the checkpoint
index (we assume each process Pi starts its execution with an initial checkpoint Ci 0). Let Ii x
denote the checkpoint interval or simply interval between checkpoints Ci x−1 and Ci x.

 When a failure occurs, the recovering process initiates rollback by broad-casting a
dependency request message to collect all the dependency information maintained by each

UNIT 4 DISTRIBUTED SYSTEMS

process. When a process receives this message, it stops its execution and replies with the
dependency information saved on the stable storage as well as with the dependency
information, if any, which is associated with its current state.

 The initiator then calculates the recovery line based on the global dependency information
and broadcasts a rollback request message containing the recovery line. Upon receiving
this message, a process whose current state belongs to the recovery line simply resumes
execution; otherwise, it rolls back to an earlier checkpoint as indicated by the recovery line.

Coordinated checkpointing

 In coordinated checkpointing, processes orchestrate their checkpointing activ-ities so that
all local checkpoints form a consistent global state. Coordinated checkpointing simplifies
recovery and is not susceptible to the domino effect, since every process always restarts
from its most recent checkpoint.

 Also, coordinated checkpointing requires each process to maintain only one checkpoint on
the stable storage, reducing the storage overhead and eliminating the need for garbage
collection. The main disadvantage of this method is that large latency is involved in
committing output, as a global checkpoint is needed before a message is sent to the OWP.
Also, delays and overhead are involved everytime a new global checkpoint is taken.

 If perfectly synchronized clocks were available at processes, the following simple method
can be used for checkpointing: all processes agree at what instants of time they will take
checkpoints, and the clocks at processes trigger the local checkpointing actions at all
processes. Since perfectly synchronized clocks are not available, the following approaches
are used to guarantee checkpoint consistency: either the sending of messages is blocked
for the duration of the protocol, or checkpoint indices are piggybacked to avoid blocking.

Blocking Checkpointing

 A straightforward approach to coordinated checkpointing is to block commu-nications

while the checkpointing protocol executes. After a process takes a local checkpoint, to
prevent orphan messages, it remains blocked until the entire checkpointing activity is
complete.

 The coordinator takes a checkpoint and broadcasts a request message to all processes,
asking them to take a checkpoint. When a process receives this message, it stops its
execution, flushes all the communication channels, takes a tentative checkpoint, and sends
an acknowledgment message back to the coordinator. After the coordinator receives
acknowledgments from all processes, it broadcasts a commit message that completes the
two-phase checkpointing protocol.

 After receiving the commit message, a process removes the old permanent checkpoint and
atomically makes the tentative checkpoint permanent and then resumes its execution and
exchange of messages with other processes. A problem with this approach is that the
computation is blocked during the checkpointing and therefore, non-blocking
checkpointing schemes are preferable.

– After a process takes a local checkpoint, to prevent orphan messages, it
remains blocked until the entire checkpointing activity is complete

UNIT 4 DISTRIBUTED SYSTEMS

– Disadvantages
• the computation is blocked during the checkpointing
Non-blocking Checkpointing

In this approach the processes need not stop their execution while taking checkpoints. A
fundamental problem in coordinated checkpointing is to pre-vent a process from receiving
application messages that could make the checkpoint inconsistent.
Consider the example in Figure (a): message m is sent by P0 after receiving a checkpoint request
from the checkpoint coordinator. Assume m reaches P1 before the checkpoint request. This sit-
uation results in an inconsistent checkpoint since checkpoint c1 x shows the receipt of message m
from P0, while checkpoint c0 x does not show m being sent from P0.

If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint
message on each channel by a checkpoint request, forcing each process to take a checkpoint
before receiving the first post-checkpoint message, as illustrated in Figure 13.6(b).

Non-blocking coordinated checkpointing: (a) checkpoint inconsistency; (b) a solution with
FIFO channels

• The processes need not stop their execution while takingcheckpoints
• A fundamental problem in coordinated check pointing is to preventa process from

receiving application messages that could make the checkpoint inconsistent.

• Example (a) : checkpoint inconsistency

message m is sent by P0 after receiving a checkpoint request from the checkpoint coordinator.
Assume m reaches P1 before the checkpoint request. This situation results in an inconsistent
checkpoint since checkpoint c1 x shows the receipt of message m from P0, while checkpoint c0 x
does not show m being sent from P0.

UNIT 4 DISTRIBUTED SYSTEMS

k

• Example (b) : a solution with FIFO channels
If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint message
on each channel by a checkpoint request, forcing each process to take a checkpoint before
receiving thefirst post-checkpoint message

Impossibility of min-process non-blocking checkpointing

A min-process, non-blocking checkpointing algorithm is one that forces only a minimum number
of processes to take a new checkpoint, and at the same time it does not force any process to suspend
its computation. Clearly, such checkpointing algorithms will be very attractive. Cao and Singhal
showed that it is impossible to design a min-process, non-blocking checkpointing algorithm.

The following type of min-process checkpointing algorithms are possible. The algorithm consists
of two phases.

 During the first phase, the checkpoint initiator identifies all processes with which it has
communicated since the last checkpoint and sends them a request. Upon receiving the
request, each process in turn identifies all processes it has communicated with since the
last checkpoint and sends them a request, and so on, until no more processes can be
identified.

 During the second phase, all processes identified in the first phase take a checkpoint. The
result is a consistent checkpoint that involves only the participating processes. In this
protocol, after a process takes a checkpoint, it cannot send any message until the second
phase terminates successfully, although receiving a message after the checkpoint has been
taken is allowable.

Based on a concept called “Z-dependency,” Cao and Singhal proved that there does not exist a
non-blocking algorithm that will allow a minimum number of processes to take their checkpoints.
Here we give only a sketch of the proof and readers are referred to the original source for a detailed
proof.

Z-dependency is defined as follows: if a process Pp sends a message to process Pq during its ith
checkpoint interval and process Pq receives the message during its jth checkpoint interval, then Pq
Z-depends on Pp during Pp’s ith checkpoint interval and Pq ’s jth checkpoint interval, denoted by
Pp →i Pq . If Pp →i Pq and Pq → j k Pr , then Pr transitively Z-depends depends on Pp during Pr ’s
kth checkpoint interval and Pp’s ith checkpoint interval, and this is denoted as Pp ∗ →i Pr .

A min process algorithm is one that satisfies the following condition: when a process Pp initiates
a new checkpoint and takes checkpoint Cp i, a process Pq takes a checkpoint Cq j associated with
Cp i if and only if Pq ∗ →j −1

i−1 Pp. In a min-process non-blocking algorithm, process Pp initiates a
new checkpoint and takes a checkpoint Cp i and if a process Pr sends a message m to Pq after it
takes a new checkpoint associated with Cp i, then Pq takes a checkpoint Cq i before processing m if
and only if Pq ∗ → j −1

i−1 Pp. According to the min-process definition, Pq takes checkpoint Cq j if
and only if Pq ∗ →j−1

i−1 Pp, but Pq should take Cq i before processing m. If it takes Cq j after
processing m, m becomes an orphan. Therefore, when a process receives a message m, it must
know if the initiator of a new checkpoint transitively Z-depends on it during the previous
checkpoint interval. But it has been proved that there is not enough information at the receiver of

j j

UNIT 4 DISTRIBUTED SYSTEMS

a message to decide whether the initiator of a new checkpoint transitively Z-depends on the
receiver. Therefore, no min-process, non-blocking algorithm exists.

 Communication-induced Checkpointing

Communication-induced checkpointing is another way to avoid the domino effect, while
allowing processes to take some of their checkpoints inde-pendently. Processes may be forced to
take additional checkpoints (over and above their autonomous checkpoints), and thus process
independence is constrained to guarantee the eventual progress of the recovery line.
Communication-induced checkpointing reduces or completely eliminates the useless
checkpoints.
• Two types of checkpoints

– autonomous and forced checkpoints
• Communication-induced checkpointing piggybacks protocol- related
information on each application message
• The receiver of each application message uses the piggybacked information to
determine if it has to take a forced checkpoint to advance the global recovery line
• The forced checkpoint must be taken before the application may process the
contents of the message
• In contrast with coordinated checkpointing, no special coordination messages are
exchanged
• Two types of communication-induced checkpointing

– (i) model-based checkpointing and
– (ii) index-based checkpointing.
Model-based checkpointing

 Model-based checkpointing prevents patterns of communications and check-points that
could result in inconsistent states among the existing checkpoints. \

 A process detects the potential for inconsistent checkpoints and independently forces local
checkpoints to prevent the formation of undesirable patterns.

 A forced checkpoint is generally used to prevent the undesirable patterns from occurring.
No control messages are exchanged among the processes during normal operation. All
information necessary to execute the protocol is piggy-backed on application messages.
The decision to take a forced checkpoint is done locally using the information available.

Index-based checkpointing

 Index-based communication-induced checkpointing assigns monotonically increasing
indexes to checkpoints, such that the checkpoints having the same index at different
processes form a consistent state.

 Inconsistency between checkpoints of the same index can be avoided in a lazy fashion if
indexes are piggybacked on application messages to help receivers decide when they
should take a forced a checkpoint.

UNIT 4 DISTRIBUTED SYSTEMS

∀ e: Stable(e) ⇒ |Depend(e)| =0

• A log-based rollback recovery makes use of deterministic and
nondeterministic events in a computation.

 Deterministic and Non-deterministic events

– Non-deterministic events can be the receipt of a message from another
process or an event internal to the process
– a message send event is not a non-deterministic event.
The execution of process P0 is a sequence of four deterministic intervals. The first one starts with
the creation of the process, while the remaining three start with the receipt of messages m0, m3,
and m7, respectively. Send event of message m2 is uniquely determined by the initial state of P0
and by the receipt of message m0, and is therefore not a non-deterministic event.

– Log-based rollback recovery assumes that all non-deterministic events can
be identified and their corresponding determinants can be logged into the stable storage
– During failure-free operation, each process logs the determinants of all
non-deterministic events that it observes onto the stable storage

No-orphans consistency condition
• Let e be a non-deterministic event that occurs at process p
Depend(e) -> the set of processes that are affected by a non-deterministic event e.This set
consists of p, and any process whose state depends on the event e according to Lamport’s
happened before relation
Log(e) -> the set of processes that have logged a copy of e’s determinant in their volatile memory
Stable(e) -> a predicate that is true if e’s determinant is logged on the stable storage
• always-no-orphans condition

 Pessimistic Logging

Pessimistic logging protocols assume that a failure can occur after any non-deterministic
event in the computation
• However, in reality failures are rare
synchronous logging

∀ (e) : Stable(e) ⇒ Depend(e) ⊆Log(e)

4.5 Log-based rollback recovery

UNIT 4 DISTRIBUTED SYSTEMS

– if an event has not been logged on the stable storage, then no processca n
depend on it.
– stronger than the always-no-orphans condition

Suppose processes P1 and P2 fail as shown, restart from checkpoints B and C, and roll forward
using their determinant logs to deliver again the same sequence of messages as in the pre-failure
execution. This guarantees that P1 and P2 will repeat exactly their pre-failure execution and re-
send the same messages. Hence, once the recovery is complete, both processes will be consistent
with the state of P0 that includes the receipt of message m7 from P1. In a pessimistic logging system,
the observable state of each process is always recoverable.

 Optimistic Logging

 In optimistic logging protocols, processes log determinants asynchronously to the stable
storage . These protocols optimistically assume that logging will be complete before a
failure occurs. Determinants are kept in a volatile log, and are periodically flushed to the
stable storage. Thus, optimistic logging does not require the application to block waiting
for the determinants to be written to the stable storage, and therefore incurs much less
overhead during failure-free execution.

 However, the price paid is more complicated recovery, garbage collection, and slower
output commit. If a process fails, the determinants in its volatile log are lost, and the state
intervals that were started by the non-deterministic events corresponding to these
determinants cannot be recovered.

 Furthermore, if the failed process sent a message during any of the state intervals that
cannot be recovered, the receiver of the message becomes an orphan process and must roll
back to undo the effects of receiving the message.

To perform rollbacks correctly, optimistic logging protocols track causal dependencies
during failure free execution

• Optimistic logging protocols require a non-trivial garbage collect ion scheme

UNIT 4 DISTRIBUTED SYSTEMS

4.6 Koo-Toueg coordinated checkpointing algorithm

• Pessimistic protocols need only keep the most recent checkpoint of each process,
whereas optimistic protocols may need to keep multiple checkpoints for each process

 Causal Logging

Combines the advantages of both pessimistic and optimistic logging at the expense of a more
complex recovery protocol. Like optimistic logging, it does not require synchronous access to the
stable storage except during output commit. Like pessimistic logging, it allows each process to
commit output independently and never creates orphans, thus isolating processes from the effects
of failures at other processes. Moreover, causal logging limits the rollback of any failed process to

the most recent checkpoint on the stable storage, thus minimizing the storage overhead and the
amount of lost work.

• Make sure that the always-no-orphans property holds
• Each process maintains information about all the events that have causally affected its
state

UNIT 4 DISTRIBUTED SYSTEMS

• A coordinated checkpointing and recovery technique that takes a consistent set
of checkpointing and avoids domino effect and livelock problems during the recovery

• Includes 2 parts: the checkpointing algorithm and the recovery algorithm

4.6.1 Checkpointing algorithm
– Assumptions: FIFO channel, end-to-end protocols, communication
failures do not partition the network, single process initiation, no process fails during the
execution of the algorithm

Two kinds of checkpoints: permanent and tentative

• Permanent checkpoint: local checkpoint, part of a consistent global checkpoint
• Tentative checkpoint: temporary checkpoint, become permanent checkpoint when the

algorithm terminates successfully

Checkpointing algorithm
2 phases
• The initiating process takes a tentative checkpoint and requests all other processes to take

tentative checkpoints. Every process can not send messages after taking tentative checkpoint.
All processes will finally have the single same decision: do or discard

• All processes will receive the final decision from initiating process and act accordingly
Correctness: for 2 reasons
• Either all or none of the processes take permanent checkpoint
• No process sends message after taking permanent checkpoint
Optimization: maybe not all of the processes need to take checkpoints (if not change since the
last checkpoint)
The rollback recovery algorithm

• Restore the system state to a consistent state after a failure with assumptions: single
initiator, checkpoint and rollback recovery algorithms are not invoked concurrently

Example of checkpoints taken unnecessarily

2 phases

UNIT 4 DISTRIBUTED SYSTEMS

4.7 Juang-Venkatesan algorithm for asynchronous checkpointing and recovery

First phase

An initiating process Pi sends a message to all other processes to check if they all are willing to
restart from their previous checkpoints. A process may reply “no” to a restart request due to any
reason (e.g., it is already participating in a checkpoint or recovery process initiated by some other
process). If Pi learns that all processes are willing to restart from their previous checkpoints, Pi
decides that all processes should roll back to their previous checkpoints. Otherwise, Pi aborts the
rollback attempt and it may attempt a recovery at a later time.

Second phase

Pi propagates its decision to all the processes. On receiving Pi’s decision, a process acts
accordingly.

During the execution of the recovery algorithm, a process cannot send messages related to the
underlying computation while it is waiting for Pi’s decision.

Correctness

All processes restart from an appropriate state because, if they decide to restart, they resume
execution from a consistent state (the checkpointing algorithm takes a consistent set of
checkpoints).

An optimization
The above recovery protocol causes all processes to roll back irrespective of whether a process
needs to roll back or not. Consider the example shown in Figure. In the event of failure of process
X, the above protocol will require processes X, Y, and Z to restart from checkpoints x2, y2, and z2,
respectively. However, note that process Z need not roll back because there has been no interaction
between process Z and the other two processes since the last checkpoint at Z.

• Assumptions: communication channels are reliable, delivery messages in FIFO
order, infinite buffers, message transmission delay is arbitrary but finite
• Underlying computation/application is event-driven: process P is at state s,
receives message m, processes the message, moves to state s’and send messages out. So the
triplet (s, m, msgs_sent) represents the state of P
Two type of log storage are maintained:
– Volatile log: short time to access but lost if processor crash. Move to
stable log periodically.
– Stable log: longer time to access but remained if crashed

Asynchronous checkpointing:
• After executing an event, the triplet is recorded without any synchronization with other

processes.
• Local checkpoint consist of set of records, first are stored in volatile log, then moved to

stable log.
Recovery algorithm
Notation and data structure

UNIT 4 DISTRIBUTED SYSTEMS

The following notation and data structure are used by the algorithm:

• RCVDi←j CkPti represents the number of messages received by processor pi from
processor pj , from the beginning of the computation until the checkpoint CkPti.

• SENTi→j CkPti represents the number of messages sent by processor pi to processor
pj , from the beginning of the computation until the checkpoint CkPti.

Idea:
 From the set of checkpoints, find a set of consistent checkpoints
 Doing that based on the number of messages sent and received

Example

Procedure RollBack_Recovery:
processor pi executes the following:

STEP (a)

if processor pi is recovering after a failure then CkPti = latest event
logged in the stable storage

else

CkPti = latest event that took place in pi {The latest event at pi can be either in stable or
in volatile storage.}

end if

STEP (b)

for k = 1 to N {N is the number of processors in the system} do for each
neighboring processor pj do

compute SENTi→j CkPti

send a ROLLBACK i SENTi→j CkPti message to pj end for

for every ROLLBACK j c message received from a neighbor j do

UNIT 4 DISTRIBUTED SYSTEMS

if RCVDi←j CkPti > c {Implies the presence of orphan messages}
then
find the latest event e such that RCVDi←j e = c {Such an event e may be in the
volatile storage or stable storage.}

CkPti = e

end if

end for

end for{for k}

 Consensus and Agreement

 Assumptions
Assumptions underlying our study of agreement algorithms:

Failure models Among the n processes in the system, at most f processes can be faulty. A faulty
process can behave in any manner allowed by the failure model assumed.

Synchronous/asynchronous communication If a failure-prone process chooses to send a message
to process Pi but fails, then Pi cannot detect the non-arrival of the message in an asynchronous
system because this scenario is indistinguishable from the scenario in which the message takes a
very long time in transit.

• Network connectivity The system has full logical connectivity, i.e., each process can
communicate with any other by direct message passing.

• Sender identification A process that receives a message always knows the identity of the

sender process. This assumption is important – because even with Byzantine behavior, even
though the payload of the message can contain fictitious data sent by a malicious sender, the
underlying network layer protocols can reveal the true identity of the sender process.

• Channel reliability The channels are reliable, and only the processes may fail (under one of
various failure models). This is a simplifying assumption in our study. As we will see even
with this simplifying assumption, the agreement problem is either unsolvable, or solvable in
a complex manner.

• Authenticated vs. non-authenticated messages In our study, we will be dealing only with

unauthenticated messages. With unauthenticated mes-sages, when a faulty process relays a
message to other processes, (i) it can forge the message and claim that it was received from
another process, and (ii) it can also tamper with the contents of a received message before
relaying it. An unauthenticated message is also called an oral message or an unsigned
message.

• Agreement variable The agreement variable may be boolean or multi-valued, and need not

be an integer. When studying some of the more complex algorithms, we will use a boolean
variable. This simplifying assumption does not affect the results for other data types, but
helps in the abstraction while presenting the algorithms.

UNIT 4 DISTRIBUTED SYSTEMS

 Problem Specifications
The Byzantine agreement and other problems

Byzantine Agreement (single source has an initial value)
Agreement:All non-faulty processes must agree on the same value.
Validity:If the source process is non-faulty, then the agreed upon value by all the non-faulty
processes must be the same as the initial value of the source.
Termination:Each non-faulty process must eventually decide on a value.

Consensus Problem (all processes have an initial value)
Agreement:All non-faulty processes must agree on the same (single) value.
Validity:If all the non-faulty processes have the same initial value, then the agreed upon value by
all the non-faulty processes must be that same value.
Termination:Each non-faulty process must eventually decide on a value.

Interactive Consistency (all processes have an initial value)
Agreement:All non-faulty processes must agree on the same array of values A[v1 . . . vn].
Validity:If process i is non-faulty and its initial value is vi , then all non-faulty processes agree
on vi as the i th element of the array A. If process j is faulty, then the non-faulty processes can
agree on any value for A[j].
Termination:Each non-faulty process must eventually decide on the array A. These problems are
equivalent to one another! Show using reductions.

 Overview of Results

Failure
mode

Synchronous system
(message-passing and shared memory)

Asynchronous system
(message-passing and shared memory)

No
failure

agreement attainable;
common knowledge also attainable

agreement attainable;
concurrent common knowledge attainable

Crash
failure

agreement attainable
f < n processes Ω(f + 1) rounds

agreement not attainable

Byzantine
failure

agreement attainable
f ≤ |(n − 1)/3∫ Byzantine processes
Ω(f + 1) rounds

agreement not attainable

Table:Overview of results on agreement. f denotes number of failure-prone processes. n
is the total number of processes.

UNIT 4 DISTRIBUTED SYSTEMS

Agreement in a failure-free system (synchronous or asynchronous)

In a failure-free system, consensus can be attained in a straightforward manner
Some Solvable Variants of the Consensus Problem in Async Systems

Solvable
Variants

Failure model and
overhead

Definition

Reliable
broadcast

crash failures, n > f
(MP)

Validity, Agreement, Integrity
conditions

k-set
consensus

crash failures. f < k < n.
(MP and SM)

size of the set of values agreed
upon must be less than k

s-
agreement

crash failures
n ≥ 5f + 1 (MP)

values agreed upon are
within s of eachother

Renaming up to f fail-stop
processes,

n ≥ 2f + 1 (MP)
Crash failures f ≤ n −

1 (SM)

select a unique name from
a set of names

Table:Some solvable variants of the agreement problem in asynchronous system. The overhead
bounds are for the given algorithms, and not necessarily tight bounds for the problem

Solvable Variants of the Consensus Problem in Async Systems

 Agreement in a failure-free system

 Agreement in (message-passing) synchronous systems with failures

 Consensus Algorithm for Crash Failures (MP, synchronous)
 Up to f (< n) crash failures possible.
 In f + 1 rounds, at least one round has no failures.
 Now justify: agreement, validity, termination conditions are satisfied.
 Complexity: O(f + 1)n2 messages
 f + 1 is lower bound on number of rounds

UNIT 4 DISTRIBUTED SYSTEMS

Upper Bound on Byzantine Processes (sync)

Taking simple majority decision does not help because loyal commander Pa cannot distinguish
between the possible scenarios (a) and (b); hence does not know which action to take.

 Byzantine agreement tree algorithm: exponential (synchronous system)

Recursive formulation
 In the first round, the commander Pc sends its value to the other three lieutenants, as

shown by dotted arrows.
 In the second round, each lieutenant relays to the other two lieutenants, the value it

received from the commander in the first round. At the end of the second round, a
lieutenant takes the majority of the values it received (i) directly from the commander in
the first round, and (ii) from the other two lieutenants in the second round.

 The majority gives a correct estimate of the commander’s value.

UNIT 4 DISTRIBUTED SYSTEMS

Consensus Solvable when f = 1, n = 4

 There is no ambiguity at any loyal commander, when taking majority decision
 Majority decision is over 2nd round messages, and 1st round message received directly

from commander-in-chief process.

Byzantine Generals (recursive formulation), (sync, msg-passing)

UNIT 4 DISTRIBUTED SYSTEMS

Relationship between # Messages and Rounds

Relationships between messages and rounds in the Oral Messages algorithm for Byzantine
agreement.
Complexity: f + 1 rounds, exponential amount of space, and (n − 1) + (n − 1)(n − 2) + . . . + (n −
1)(n − 2)..(n − f − 1)messages

UNIT 4 DISTRIBUTED SYSTEMS

Bzantine Generals (iterative formulation), Sync, Msg-passing

Tree Data Structure for Agreement Problem (Byzantine Generals)

UNIT 4 DISTRIBUTED SYSTEMS

 Exponential Algorithm: An example

Impact of a Loyal and of a Disloyal Commander

UNIT 4 DISTRIBUTED SYSTEMS

The effects of a loyal or a disloyal commander in a system with n = 14 and f = 4. The subsystems
that need to tolerate k and k − 1 traitors are shown for two cases. (a) Loyal commander.
(b) No assumptions about commander.

(a) the commander who invokes Oral Msg(x) is loyal, so all the loyal processes have the same
estimate. Although the subsystem of 3x processes has x malicious processes, all the loyal
processes have the same view to begin with. Even if this case repeats for each nested invocation
of Oral Msg, even after x rounds, among the processes, the loyal processes are in a simple
majority, so the majority function works in having them maintain the same common view of the
loyal commander’s value.
(b) the commander who invokes Oral Msg(x) may be malicious and can send conflicting values
to the loyal processes. The subsystem of 3x processes has x − 1 malicious processes, but all the
loyal processes do not have the same view to begin with.

 The Phase King Algorithm

Operation
Each phase has a unique ”phase king” derived, say, from PID. Each phase has
two rounds:

in 1st round, each process sends its estimate to all other processes.
in 2nd round, the ”Phase king” process arrives at an estimate based on the values it
received in 1st round, and broadcasts its new estimate to all others.

UNIT 4 DISTRIBUTED SYSTEMS

(f + 1) phases, (f + 1)[(n − 1)(n + 1)] messages, and can tolerate up to
f < |n/4| malicious processes

Correctness Argument

Among f + 1 phases, at least one phase k where phase-king is non-malicious.
In phase k, all non-malicious processes Pi and Pj will have same estimate of consensus
value as Pk does.

Pi and Pj use their own majority values (Hint: =⇒ Pi ’s mult > n/2 + f)
Pi uses its majority value; Pj uses phase-king’s tie-breaker value. (Hint: Pi ”s
mult > n/2 + f , Pj ’s mult > n/2 for same value)
Pi and Pj use the phase-king’s tie-breaker value. (Hint: In the phase in which
Pk is non-malicious, it sends same value to Pi and Pj)

In all 3 cases, argue that Pi and Pj end up with same value as estimate
If all non-malicious processes have the value x at the start of a phase, they will continue
to have x as the consensus value at the end of the phase.

